US009135323B2

a2z United States Patent (10) Patent No.: US 9,135,323 B2

Wada et al. (45) Date of Patent: Sep. 15, 2015
(54) SYSTEM AND METHOD FOR CLASSIFYING (56) References Cited
DATA DUMP DATA
U.S. PATENT DOCUMENTS
(75) InVeIltOI'S Jon wada’ .Santa Momca5 CA (US)5 5’815’709 A * 9/1998 Waldo et a_l """"""""" 712/300
Mark A. Miller, Santa Monica, CA (US) 8,621,282 B1* 12/2013 Mixter ctal. - 714/38.11
2004/0220975 Al* 11/2004 Carpentier et al. 707/200
(73) Assignee: Raytheon Company, Waltham, MA 2005/0044536 Al* 2/2005 Kwongetal. ... 717/128
(US) 2007/0105607 Al 5/2007 Russell et al.
2008/0177756 Al 7/2008 Kosche et al.
. 2012/0102468 Al* 4/2012 Lefurgycccccovevvene 717/128
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 FOREIGN PATENT DOCUMENTS
U.S.C. 154(b) by 239 days.
WO WO0-2014042759 Al 3/2014
(21) Appl. No.: 13/613,121 OTHER PUBLICATIONS
(22) Filed: Sep. 13, 2012 “International Application Serial No. PCT/US2013/050264, Interna-
tional Search Report mailed Oct. 14, 2013”, 3 pgs.
(65) Prior Publication Data “International Application Serial No. PCT/US2013/050264, Written
Opinion mailed Oct. 14, 2013, 7 pgs.
US 2014/0074840 A1 Mar. 13, 2014
* cited by examiner
(51) Imt.ClL
GO6F 7/02 (2006.01) Primary Examiner — Bruce Moser
GOG6F 17/30 (2006.01) (74) Attorney, Agent, or Firm — Schwegman Lundberg &
GO6F 11/36 (2006.01) Woessner, P.A.
GO6F 11/34 (2006.01) 57 ABSTRACT
GOGF 9/44 (2006.01) (7
GO6K 9/00 (2006.01) An example of a system comprises a fingerprint calculator
GO6F 9/45 (2006.01) configured to receive data structure information and create a
(52) US.CL fingerprint as a function of the data structure information, a
CPC oo GOGF 17/30598 (2013.01), GO6F §/52 ~ c0de generator configured to generate modified machine
: . code, the modified machine code including the fingerprint
(2013.01); GOGF 8/70 (2013.01); GO6F - T :
113476 (2013.01): GOGF 11/36 (2013.01): embedded therein, a fingerprint identifier configured to iden-
Go6 F(11 /3& 5)2’ 013.01): Co 65‘7 11 /3' 6 2)‘; tify the fingerprint in data received from a data dump, a data
; (01);) structure lookup table including the fingerprint and the data
(2013.01); GOGF 11/3636 (2013.01); GO6F structure information associated with the fingerprint stored
17/30949 (2013.01); GO6K 9/00 (2013.01) thereon, and a data interpreter configured to interpret, using
(58) Field of Classification Search data from the data dump and the data structure information,

CPC GO6F 11/362; GOGF 8/70; GO6F 11/36; the data structure of at least a portion of the data from the data
GOGF 11/3644; GOGF 1730949 dump.
USPC e 707/747

See application file for complete search history.

204

20 Claims, 6 Drawing Sheets

ﬂo
218
\.

PROGRAMMING
LANGUAGE N
DESCRIPTION COMPILATION EXECUTABLE
OF DATA CODE
STRUCTURE
206 216
S oara
STRUCTURE
INFORMATION
208 214
DATA
INTIALIZER
2 , 210

N
DATABASE |

FINGERPRINT

CODE
GENERATOR

US 9,135,323 B2

Sheet 1 of 6

Sep. 15, 2015

U.S. Patent

I o
F1avl
NETENPEIL dNX001 NEIRINE (]
V1ivd JUNLONYULS LNINdHIONIS LNIWNHLSNI
viva
\ fJ r/ fJ
N\
9ti 42 ZLl oLl
HOLVNIANIO HOLVINDIVD
HIMNIT 3000 3002 LNINd¥IONIA ¥3dNOD
_/ f/ f/ \
801 901 ¥01 zZ01

US 9,135,323 B2

Sheet 2 of 6

Sep. 15, 2015

U.S. Patent

& Ol
HOLVHINID ININdYIDNIL " Sovaviva
34009 \
/ A
(1]4 vz
UIZIVILNI
viva
N
AT 80¢
NOILYINHO4NI
JUNLONYLS
viva \J
N\
90¢
912
JANLONAULS
v.lva 40
3009
16v1No3ax3 NOILV1IdINOD NOLLdIN9S3d
\ IOVNONY] \
~N\ ONINNVADOUL TN
8le \ 0z 202
002

US 9,135,323 B2

Sheet 3 of 6

Sep. 15, 2015

U.S. Patent

INIIdEIONIAL
1334dd31NI

INI-MdHIONIA
AdILN3AI

90¢

00¢€

& O

V1ivad L3¥da3LNI

viva dnnda

o€

NOILNDO3X3
NVYO0ud

411

U.S. Patent Sep. 15, 2015 Sheet 4 of 6 US 9,135,323 B2

400

402 ~~ RECEIVE DATA STRUCTURE INFORMATION.

404 ~or CREATE A FINGERPRINT.

RECORD DATA STRUCTURE INFORMATION
406 AND FINGERPRINT.

408 ~o»~ EMBED THE FINGERPRINT IN MACHINE CODE.

FIG. 4

U.S. Patent Sep. 15, 2015 Sheet 5 of 6 US 9,135,323 B2

500

/

502 wrm RECEIVE DATA IN A DATA DUMP.

504 ~r IDENTIFY A FINGERPRINT IN THE DATA.

506 s~~~y DETERMINE DATA STRUCTURE INFORMATION.

508 ~or RECONSTRUCT THE DATA STRUCTURE.

HG. 5

US 9,135,323 B2

Sheet 6 of 6

Sep. 15, 2015

U.S. Patent

9 Ol

49

98

~ 55

BIYHAIN

OV ANEIN TA1ED

S TYTERS Eﬂmﬂqﬁg TS AIAREVR umﬁnmmm
a;j, sl Rl A D
€9~ Iyl | | SPATEISAS

US 9,135,323 B2

1
SYSTEM AND METHOD FOR CLASSIFYING
DATA DUMP DATA

GOVERNMENT RIGHTS

This invention was made with United States Government
support under Contract Number [WITHHELD)]. The United
States Government has certain rights in this invention.

TECHNICAL FIELD

This disclosure relates generally to classifying data from a
data dump.

BACKGROUND ART

Reconstructing data structures from a data dump can be
fraught with problems. Data dumps can be received from
instruments such as embedded software instruments. Embed-
ded software instruments are common and typically designed
to control specific functions within a larger system. These
instruments are used in many places such as digital watches,
portable music players, traffic lights, or factory controllers.
Debugging software of the embedded instrument can be prob-
lematic.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a block diagram of an example of an
apparatus.

FIG. 2 illustrates an example of a technique of constructing
data capable of being classified.

FIG. 3 illustrates an example of a technique of reconstruct-
ing a data structure from a data dump.

FIG. 4 illustrates an example of a technique of constructing
data capable of being classified.

FIG. 5 illustrates an example of a technique of reconstruct-
ing a data structure from a data dump.

FIG. 6 illustrates an example of a computer system to
implement methods.

DESCRIPTION OF EMBODIMENTS

In the following detailed description, reference is made to
the accompanying drawings that form a part hereof, and in
which is shown by way of illustration specific embodiments
in which the inventive subject matter can be practiced. These
embodiments are described in sufficient detail to enable those
skilled in the art to practice them, and it is to be understood
that other embodiments can be utilized and that structural,
logical, and electrical changes can be made without departing
from the scope of the inventive subject matter. Such embodi-
ments of the inventive subject matter can be referred to,
individually and/or collectively, herein by the term “inven-
tion” merely for convenience and without intending to limit
the scope of this application to any single invention or inven-
tive concept if more than one is in fact disclosed. The follow-
ing description is, therefore, not to be taken in a limited sense,
and the scope of the inventive subject matter is defined by the
appended claims.

Instrumentation is a branch of engineering dealing with
measurement and control. Instrumentation of embedded soft-
ware is a technique for debugging software of embedded
instruments. Instrumentation of embedded software can be
used to verify proper system operation or locate and diagnose
problems with the embedded software. In some instances,
instrumentation of embedded software includes obtaining a

10

15

20

25

30

35

40

45

50

55

60

65

2

data dump data, such as binary data, from an embedded
instrument (e.g. obtaining a stream of bits from the embedded
instrument).

A problem associated with debugging or verifying soft-
ware or firmware operation using a data dump can include
determining the memory layout of the data obtained from the
data dump. For example, turning data from a data dump into
programming language data structures can be difficult. A data
dump may not be self-describing, thus reconstructing the data
structure of the data dump data can be difficult (as used
herein, “data dump data” includes data provided through a
data dump). This problem can be compounded by software or
firmware that includes many complex data structures. A pos-
sible solution to this problem can be to generate a hash tag for
every data structure present in the data dump data and create
alookup table of hash tags and corresponding data structures.
The hash tag can be embedded at a corresponding location in
the data dump data such that the hash tag can be correctly
associated with corresponding data dump data. In this way the
data structure associated with the data dump data can be
reconstructed by interpreting the data dump data in light of
the corresponding description in the lookup table correspond-
ing to the relevant hash tag.

Another problem associated with debugging or verifying
embedded instrument operation using data dumps can
include instrument bandwidth constraints limiting the
amount of descriptive metadata that can be attached to the
data dump data. Thus, the bandwidth of the instrument can
limit the number of possible metadata descriptors that can be
attached to the dump data, making it difficult to describe the
data dump data in a system with more data structure types
than available descriptors. By creating a relatively small hash
tag for each data structure and adding the hash tag to the data
stream when a data structure is present in the data dump data
a sufficiently small amount of bandwidth can be used such
that the bandwidth constraints can still be met.

FIG. 1 shows a block diagram of an example of a system
100 for classifying dump data. The system 100 can include a
compiler 102, a fingerprint calculator 104, a code generator
106, a code linker 108, an instrument 110, a fingerprint iden-
tifier 112, a data structure lookup table 114, or a data inter-
preter 116. Any of the numbered items of FIG. 1 can be
implemented using one or more modules.

The compiler 102 is operable to receive source code and
produce a lower level representation of the source code such
as an intermediate level representation of the source code
(e.g. a level not as high as source code and not as low as
machine or object code). The compiler 102 can receive source
code written in a variety of programming languages such as
C, Python, Matlab, C++, Visual Basic, Java, C#, Basic, Perl,
or Haskell, among others. The compiler 102 can create a
header file with a declaration of data structures present in the
source code. The compiler c102 an create a text description,
such as a memory layout description, of the data structures
present in the source code

The fingerprint calculator 104 is operable to receive data
representative of a data structure (e.g., data structure infor-
mation) and calculate a fingerprint as a function of the data
representative of the data structure. The fingerprint can be a
non-cryptographic hash, a cryptographic hash, such as an
MD-4, MD-5, SHA-1, or SHA-2 hash, or some other identi-
fier. The fingerprint calculator 104 can be coupled to the
compiler 102 to transmit a calculated fingerprint thereto. The
fingerprint calculated by the fingerprint calculator 104 can be
sufficiently small (e.g., comprise a sufficiently small number
of'bits such as two bytes or fewer bits) such that a fingerprint
created does not take up too much bandwidth when transmit-

US 9,135,323 B2

3

ted in a data dump. The fingerprint calculator 104 can embed
a calculated fingerprint in the intermediate level representa-
tion of source code received from the compiler 102. The
fingerprint can be embedded in a location in the intermediate
level representation such that the fingerprint can be associated
with a specific data structure. The fingerprint can directly
precede the data structure it represents. It should be appreci-
ated that the fingerprint can be located at any place in the
intermediate level representation of the source code so long as
the fingerprint can be associated with the data structure it is to
represent.

The code generator 106 is operable to transform source
code or an intermediate level representation of source code
into machine, assembly, or object code. The code generator
106 can receive compiler 102 output such as source code, a
memory layout description, or a header file that includes a
declaration of data structures. The code generator 106 can
receive one or more fingerprints from the fingerprint calcula-
tor 104. The code generator 106 can receive an intermediate
level representation of source code with at least one finger-
print embedded therein. The code generator 106 can trans-
form the intermediate level representation of source code
embedded with at least one fingerprint into machine, assem-
bly, or object code. The transformed intermediate level rep-
resentation of the source code can include a representation of
the fingerprint embedded therein.

The code generator 106 can receive source code or an
intermediate level representation of source code from com-
piler 102 and at least one fingerprint from fingerprint calcu-
lator 104. The code generator 106 can be operable to create
modified machine code as a function of the source code and
the at least one fingerprint. The modified machine code can
include machine code created using the source code and the
fingerprint embedded therein. The fingerprint can directly
precede the data structure it represents in the code generated
by code generator 106. It should be appreciated that the
fingerprint can be located at any place in the code generated
by code generator 106 so long as the fingerprint can be asso-
ciated with the data structure it is to represent.

The code linker 108 is operable to combine multiple
objects, or chunks of machine, assembly, or object code, into
an executable program. The code linker 108 can receive the
objects or chunks of machine, assembly, or object code from
the code generator 106.

The instrument 110 is operable to provide a data dump of
data including a fingerprint embedded therein. The data dump
data can be binary data received from a data port of the
instrument 110. The data dump data can be streamed from the
instrument 110. The instrument 110 can include the execut-
able generated by the code linker 108, such as running the
executable code as an application. The instrument 110 can be
an embedded instrument programmed with the executable
code.

The fingerprint identifier 112 is operable to retrieve or
identify a fingerprint included in data received from a data
dump. The data dump can be received from instrument 110 or
any other device capable of providing a data dump to the
fingerprint identifier 112. The fingerprint identifier 112 canbe
configured to find a specific bit string in a data dump and,
using pre-defined rules, determine the fingerprint. For
example, consider a data dump of bits comprising
“101110110001010011,” and assume that the pre-defined
rule is that an eight bit fingerprint immediately follows the
specific bit string “101100.” The fingerprint identifier 112 can
scan the bit sequence for the first instance of the specific bit
string “101100.” The first instance of this string in this
example begins at the fifth bit of the sequence. Using the

20

30

35

40

45

50

55

4

pre-defined rule that the eight bit fingerprint immediately
follows the specific bit string, the fingerprint identifier 112
determines that the fingerprint is “01010011”. A pre-defined
rule can be that there is a specific bit string, such as “10100,”
followed by a two byte fingerprint, followed by a two byte
unsigned number indicating the number of bits that describe
the corresponding data structure. A pre-defined rule such as
this can help eliminate repeatedly searching the data dump
data for the specific bit string or avoid errors in the event that
the fixed pattern occurs in the data dump data.

The data structure lookup table 114 is operable to store data
structure information and a fingerprint corresponding to the
data structure represented by the data structure information.
Data structure information can include a name of a variable,
type of variable, a location of a variable in memory, a size of
avariable, a type of encoding used for a variable, a number of
bits between members of an array variable, a number of bits in
the data dump data corresponding to the data structure of a
variable (the number of bits in the data dump data correspond-
ing to the data structure of a variable may or may not include
the number of bits of the corresponding fingerprint), or the
like. As used herein, a variable can include a corresponding
data structure and can comprise one or more variables that can
change value, remain constant, or a combination thereof.

Data structure information can be presented in a file or
embedded in output compiler code. For example, a compiler
102 can be configured to produce output using a DWARF
(Debugging With Attributed Record Formats) file format and
can produce a file with a “.0” (Output) extension that includes
data structure information contained therein. Such an output
can be realized, for example, using a DWARF output from a
GNU Compiler Collection (GCC) compiler system. In
another example, a Microsoft® compiler generates a file with
a “.pdb” (Program Database) extension that includes data
structure information. The data structure information can be
determined from reading and interpreting a file that includes
the data structure information. The compiler 102 can be con-
figured to embed data structure information in executable
data. The data structure information can be retrieved from the
executable data. Software can interpret the file or executable
data to extrapolate the data structure information. The data
structure information can be logged in data structure lookup
table 114. The data structure information can be recorded as
a data structure object. The data structure lookup table 114
can include a list of pre-defined data structures that include
data structure information. Data structure information can be
recorded in a file such as an XML (Extensible Markup Lan-
guage) or JSON (JavaScript Object Notation) file. Files con-
taining data structure information can be read by a generic
library and the data structure information read from the files
can be used to interpret data received from a data dump.

The data interpreter 116 is operable to receive data struc-
ture information and data dump data and construct a data
structure based on at least some of the data structure infor-
mation and at least some of the data dump data. The data
interpreter 116 can be coupled to instrument 110 to receive
data dump data. The data interpreter 116 can be coupled to
data structure lookup table 114 to receive data structure infor-
mation. To expand on a previous example, consider the fin-
gerprint “01010011” and the corresponding data structure bit
stream “1011111011101111.” By looking up the fingerprint
in data structure lookup table 114 it is determined that the data
structure is an unsigned sixteen bit integer, named “cattle.”
The data interpreter 116 knows that the next sixteen bits
define the value for “cattle,” and determines that the value for
“cattle” was 48,879 in decimal (or “BEEF” in hexadecimal)
at the point in time corresponding to that portion of the data

US 9,135,323 B2

5

dump. This example uses binary dump data, however it
should be appreciated that the data dump data can be provided
in any base such as three, four, five, six, seven, eight, nine,
ten . . . sixteen, etc.

FIG. 2 shows an example of a technique 200 of construct-
ing data capable of being classified, according to an example
embodiment. At 202, a programming language definition of a
data structure can be received. At 204, the programming
language definition can be compiled, such as with compiler
102. At206, data structure information can be created, such as
by the compiler 102. At 208, the data structure information
can be processed by a digest function, such as can be imple-
mented by fingerprint calculator 104. At 210, the digest func-
tion can create a fingerprint. The fingerprint can be unique to
the data structure. At 212, the fingerprint can be sent to a code
generator, such as code generator 106. At 214, the variables of
the compiled code can be initialized. At 216, the initialized
data can be sent to a code linker, such as code linker 108. At
218, the initialized data can be processed into executable
code. The executable code can be used as an application on an
instrument such as instrument 110.

At 220, the data structure information and fingerprint can
be logged in a database, such as data structure lookup table
114. The data structure information can be logged according
to the value of the fingerprint such that when a user, processor,
or the like, looks up the fingerprint the corresponding data
structure can be determined.

FIG. 3 shows an example of a technique 300 of reconstruct-
ing a data structure from a data dump. Executable code can be
created. At 302, the executable code can be executed as a
program. At 304, the code executed or modified by the pro-
gram can be transmitted (e.g. streamed) in a data dump. At
306, a fingerprint embedded in the code can be identified,
such as by using fingerprint identifier 112. At 308, the iden-
tified fingerprint can be sent to be interpreted, such as by
looking up the identified fingerprint in data structure lookup
table 114. At310, the data can be interpreted, such as by using
data interpreter 116. The interpreted data can be sent to a
machine or module operable to reconstruct what the program
was doing at or around the time corresponding to the data
dump.

FIG. 4 shows an example of a technique 400 of construct-
ing data capable of being classified, according to an example
embodiment. At 402, data structure information can be
received. The data structure information can be extrapolated,
such as by reading or interpreting an output file created by a
compiler 102 or determining the data structure information
by reading and interpreting code produced by the compiler
102. Receiving data structure information can include receiv-
ing a name of a variable, a variable type, a location of the
variable, or the size of the variable. At 404, a fingerprint can
be created, such as by using fingerprint calculator 104. At
406, the data structure information and fingerprint can be
recorded, such as recording in a data structure lookup table
114 or a database that includes the data structure lookup table
114. The fingerprint can be embedded in machine code using
a code generator 106. The fingerprint can be embedded in a
known location such that when the fingerprint is read the data
corresponding to the data structure corresponding to the fin-
gerprint can be extrapolated.

FIG. 5 is an example of a technique 500 of reconstructing
a data structure from a data dump. At 502, data can be
received in a data dump, such as by streaming data from
instrument 110. A fingerprint identifier 112 can receive the
data dump. At 504, a fingerprint in the data dump data can be
identified, such as by using fingerprint identifier 112. At 506,
data structure information can be determined, such as by

10

15

20

25

30

35

40

45

50

55

60

65

6

looking up the data structure information in a database or data
structure lookup table 114. At 508, the data structure can be
reconstructed, such as by using data interpreter 116. A new
fingerprint can be created after the data structure, or the
corresponding data structure information, is modified.

FIG. 6 is a block diagram of a computer system to imple-
ment methods according to an example embodiment. In the
embodiment shown in FIG. 6, a hardware and operating envi-
ronment is provided that is applicable to any of the servers
and/or remote clients shown in the other Figures.

As shown in FIG. 6, one embodiment of the hardware and
operating environment includes a general purpose computing
device in the form of a computer 600 (e.g., a personal com-
puter, workstation, or server), including one or more process-
ing units 621, a system memory 622, and a system bus 623
that operatively couples various system components includ-
ing the system memory 622 to the processing unit 621. There
can be only one or there can be more than one processing unit
621, such that the processor of computer 600 comprises a
single central-processing unit (CPU), or a plurality of pro-
cessing units, commonly referred to as a multiprocessor or
parallel-processor environment. In various embodiments,
computer 600 is a conventional computer, a distributed com-
puter, or any other type of computer.

The system bus 623 can be any of several types of bus
structures including a memory bus or memory controller, a
peripheral bus, and a local bus using any of a variety of bus
architectures. The system memory can also be referred to as
simply the memory, and, in some embodiments, includes
read-only memory (ROM) 624 and random-access memory
(RAM) 625. A basic input/output system (BIOS) program
626, containing the basic routines that help to transfer infor-
mation between elements within the computer 600, such as
during start-up, can be stored in ROM 624. The computer 600
further includes a hard disk drive 627 for reading from and
writing to a hard disk, not shown, a magnetic disk drive 628
for reading from or writing to a removable magnetic disk 629,
and an optical disk drive 630 for reading from or writing to a
removable optical disk 631 such as a CD ROM or other
optical media.

The hard disk drive 627, magnetic disk drive 628, and
optical disk drive 630 couple with a hard disk drive interface
632, a magnetic disk drive interface 633, and an optical disk
drive interface 634, respectively. The drives and their associ-
ated computer-readable media provide non volatile storage of
computer-readable instructions, data structures, program
modules and other data for the computer 600. It should be
appreciated by those skilled in the art that any type of com-
puter-readable media which can store data that is accessible
by a computer, such as magnetic cassettes, flash memory
cards, digital video disks, Bernoulli cartridges, random
access memories (RAMs), read only memories (ROMs),
redundant arrays of independent disks (e.g., RAID storage
devices) and the like, can be used in the exemplary operating
environment.

A plurality of program modules can be stored on the hard
disk, magnetic disk 629, optical disk 631, ROM 624, or RAM
625, including an operating system 635, one or more appli-
cation programs 636, other program modules 637, and pro-
gram data 638. Programming for implementing one or more
processes or method described herein can be resident on any
one or number of these computer-readable media.

A user can enter commands and information into computer
600 through input devices such as a keyboard 640 and point-
ing device 642. Other input devices (not shown) can include
a microphone, joystick, game pad, satellite dish, scanner, or
the like. These other input devices are often connected to the

US 9,135,323 B2

7

one or more processing units 621 through a serial port inter-
face 646 that is coupled to the system bus 623, but can be
connected by other interfaces, such as a parallel port, game
port, or a universal serial bus (USB). A monitor 647 or other
type of display device can also be connected to the system bus
623 via an interface, such as a video adapter 648. The monitor
647 can display a graphical user interface for the user. In
addition to the monitor 647, computers typically include
other peripheral output devices (not shown), such as speakers
and printers.

The computer 600 can operate in a networked environment
using logical connections to one or more remote computers or
servers, such as server 649. These logical connections are
achieved by a communication device coupled to or a part of
the computer 600; the invention is not limited to a particular
type of communications device. The server 649 can be
another computer, a server, a router, a network PC, a client, a
peer device or other common network node, and typically
includes many or all of the elements described above 1/0
relative to the computer 600, although only a memory storage
device 650 has been illustrated. The logical connections
depicted in FIG. 6 include a local area network (LAN) 651
and/or a wide area network (WAN) 652. Such networking
environments are commonplace in office networks, enter-
prise-wide computer networks, intranets and the internet,
which are all types of networks.

When used in a LAN-networking environment, the com-
puter 600 is connected to the LAN 651 through a network
interface or adapter 653, which is one type of communica-
tions device. In some embodiments, when used in a WAN-
networking environment, the computer 600 typically
includes a modem 654 (another type of communications
device) or any other type of communications device, e.g., a
wireless transceiver, for establishing communications over
the wide-area network 652, such as the internet. The modem
654, which can be internal or external, is connected to the
system bus 623 via the serial port interface 646. In a net-
worked environment, program modules depicted relative to
the computer 600 can be stored in the remote memory storage
device 650 of remote computer, or server 649 (e.g., remote
server or remote computer). It is appreciated that the network
connections shown are exemplary and other means of, and
communications devices for, establishing a communications
link between the computers can be used including hybrid
fiber-coax connections, T1-T3 lines, DSL’s, OC-3 and/or
OC-12, TCP/IP, microwave, wireless application policy, and
any other electronic media through any suitable switches,
routers, outlets and power lines, as the same are known and
understood by one of ordinary skill in the art.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various aspects of the present disclo-
sure. In this regard, each block in the flowchart or block
diagrams can represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block can occur out of the order noted
in the figures. For example, two blocks shown in succession
can, in fact, be executed substantially concurrently, or the
blocks can sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified

10

30

40

45

55

8

functions or acts, or combinations of special purpose hard-
ware and computer instructions.

An advantage of one or more embodiments can include
adding a minimal amount of metadata to the data dump. A
hash tag value created based on the data structures present in
the embedded instrument can be concise and unique to allow
a minimal amount of bits to be added to the dump data while
still identifying what the data structure is. Another advantage
of one or more embodiments can include automatically
changing the hash tag as a data structure is modified. Another
advantage of one or more embodiments can include removing
an element of human error in binary data dump systems that
include a manual assignment of data type identifiers. Another
advantage of one or more embodiments can include eliminat-
ing coordination of assigned identifiers. This advantage can
be particularly relevant with embedded instruments that
include some form of distributed development.

Another advantage of one or more embodiments can
include shifting complexity from the back end to the front
end. That is, complexity can be shifted from figuring out the
data structure on the back end to adding a description of the
data structure using a building tool (e.g. compiler). Another
advantage of one or more embodiments can include eliminat-
ing build or version identifiers. This advantage can be par-
ticularly relevant with embedded instruments that include
some form of distributed or incremental build. Another
advantage of one or more embodiments can include not gen-
erating a new fingerprint for a data structure if the data struc-
ture has not changed.

EXAMPLES AND ADDITIONAL NOTES

In Example 1, a system for classifying data dump data
comprises a fingerprint calculator configured to receive data
structure information.

In Example 2, the fingerprint calculator of Example 1 is
configured to create a fingerprint as a function of the data
structure information.

In Example 3, the system of at least one of Examples 1-2
comprises a code generator configured to generate modified
machine code, the modified machine code including the fin-
gerprint embedded therein.

In Example 4, the system of at least one of Examples 1-3
comprises a fingerprint identifier configured to identify the
fingerprint in data received from a data dump.

In Example 5, the system of at least one of Examples 1-4
comprises a data structure lookup table including (1) the
fingerprint and (2) the data structure information stored
therein.

In Example 6, the system of at least one of Examples 1-5
comprises a data interpreter configured to interpret the data
structure, using at least some of the data from the data dump
and the data structure information.

In Example 7, the data structure information of at least one
of Examples 1-6 comprises a type of variable, a name of the
variable, a size of the variable, or a location of the variable.

In Example 8, the fingerprint calculator of at least one of
Examples 1-7 is configured to use a cryptographic hash algo-
rithm to create the fingerprint.

In Example 9, the fingerprint of at least one of Examples
1-8 is created using at least one of an MD4, MD5, SHA-1, or
SHA-2 hash algorithm.

In Example 10, the data structure lookup table of at least
one of Examples 1-9 is a database.

In Example 11, the data dump of at least one of Examples
1-10 is received from an embedded instrument.

US 9,135,323 B2

9

In Example 12 a computer implemented method comprises
receiving data structure information.

InExample 13, the method of atleast one of Examples 1-12
comprises creating a fingerprint as a function of the data
structure information.

InExample 14, the method of atleast one of Examples 1-13
comprises recording the data structure information and the
fingerprint in a data structure lookup table.

InExample 15, the method of at least one of Examples 1-14
comprises embedding the fingerprint in source code so that
data dump data corresponding to a data structure correspond-
ing to the data structure information can be extrapolated.

InExample 16, the method of atleast one of Examples 1-15
comprises receiving data, including the fingerprint, in a data
dump.

InExample 17, the method of at least one of Examples 1-16
comprises identifying the fingerprint in the data in the data
dump.

InExample 18, the method of atleast one of Examples 1-17
comprises looking up the data structure information corre-
sponding to the fingerprint in the data structure lookup table.

InExample 19, the method of atleast one of Examples 1-18
comprises reconstructing the data structure using the data
structure information and at least some of the data in the data
dump.

In Example 20, creating the fingerprint of at least one of
Examples 1-19 includes creating a cryptographic hash.

In Example 21, determining the data structure correspond-
ing to the fingerprint of at least one of Examples 1-20 includes
looking up the corresponding data structure in a lookup table.

In Example 22, receiving data structure information of at
least one of Examples 1-21 includes receiving at least one of
variable name, variable type, location of the variable, or the
size of the variable.

In Example 23, receiving the data dump of at least one of
Examples 1-22 includes streaming the dump data from an
instrument.

InExample 24, the method of at least one of Examples 1-23
comprises updating the fingerprint of the data structure infor-
mation after the corresponding data structure is modified.

In Example 25, creating the fingerprint of at least one of
Examples 1-24 includes creating the fingerprint using a fin-
gerprint calculator.

In Example 26, embedding the fingerprint of at least one of
Examples 1-25 includes embedding the fingerprint using a
code generator.

In Example 27, identifying the fingerprint of at least one of
Examples 1-26 includes identifying the fingerprint using a
fingerprint identifier.

In Example 28, reconstructing the data structure of at least
one of Examples 1-27 includes reconstructing the data struc-
ture using a data interpreter.

In Example 29, the instrument of at least one of Examples
1-28 is an embedded instrument.

In Example 30 a machine readable storage device stores
instructions, which, when performed by a machine, cause the
machine to perform operations for classifying data dump data
comprising receiving data structure information.

In Example 31, the machine readable storage device of at
least one of Examples 1-30 comprises instructions which,
when performed by a machine, cause the machine to perform
operations comprising creating a fingerprint as a function of
the data structure information.

In Example 32, the machine readable storage device of at
least one of Examples 1-31 comprises instructions which,
when performed by a machine, cause the machine to perform

10

15

20

25

30

35

40

45

50

55

60

65

10

operations comprising recording the data structure informa-
tion and the fingerprint in a data structure lookup table.

In Example 33, the machine readable storage device of at
least one of Examples 1-32 comprises instructions which,
when performed by a machine, cause the machine to perform
operations comprising embedding the fingerprint in machine
code so that data dump data corresponding to a data structure
corresponding to the data structure information can be
extrapolated.

In Example 34, the machine readable storage device of at
least one of Examples 1-33 comprises instructions which,
when performed by a machine, cause the machine to perform
operations comprising receiving data, including the finger-
print, in a data dump.

In Example 35, the machine readable storage device of at
least one of Examples 1-34 comprises instructions which,
when performed by a machine, cause the machine to perform
operations comprising identifying the fingerprint in the data
in the data dump.

In Example 36, the machine readable storage device of at
least one of Examples 1-35 comprises instructions which,
when performed by a machine, cause the machine to perform
operations comprising determining the data structure by
looking up the data structure information corresponding to
the fingerprint in the data structure lookup table.

In Example 37, the machine readable storage device of at
least one of Examples 1-36 comprises instructions which,
when performed by a machine, cause the machine to perform
operations comprising reconstructing the data structure using
the data structure information and the data in the data dump.

In Example 38, the instructions for creating the fingerprint
of at least one of Examples 1-37 include instructions which,
when performed by a machine, cause the machine to perform
operations comprising creating a cryptographic hash.

In Example 39, the instructions for determining the data
structure corresponding to the fingerprint of at least one of
Examples 1-38 include instructions which, when performed
by a machine, cause the machine to perform operations com-
prising looking up the corresponding data structure in a
lookup table.

In Example 40, the instructions for receiving data structure
information of at least one of Examples 1-39 include instruc-
tions which, when performed by a machine, cause the
machine to perform operations comprising receiving at least
one of a variable name, variable type, location of the variable,
and the size of the variable.

In Example 41, the instructions for receiving the data dump
of at least one of Examples 1-40 include instructions which,
when performed by a machine, cause the machine to perform
operations comprising streaming the dump data from an
embedded instrument.

In this document, the terms “a” or “an” are used, as is
common in patent documents, to include one or more than
one, independent of any other instances or usages of “at least
one” or “one or more.” In this document, the term “or” is used
to refer to a nonexclusive or, such that “A or B” includes “A
but not B,” “B but not A,” and “A and B,” unless otherwise
indicated. In this document, the terms “including” and “in
which” are used as the plain-English equivalents of the
respective terms “comprising” and “wherein.” Also, in the
following claims, the terms “including” and “comprising” are
open-ended, that is, a system, device, article, composition,
formulation, or process that includes elements in addition to
those listed after such a term in a claim are still deemed to fall
within the scope of that claim. Moreover, in the following

US 9,135,323 B2

11

claims, the terms “first,” “second,” and “third,” etc. are used
merely as labels, and are not intended to impose numerical
requirements on their objects.

Although an embodiment has been described with refer-
ence to specific example embodiments, it will be evident that
various modifications and changes may be made to these
embodiments without departing from the broader spirit and
scope of the invention. Accordingly, the specification and
drawings are to be regarded in an illustrative rather than a
restrictive sense. The accompanying drawings that form a
part hereof, show by way ofillustration, and not of limitation,
specific embodiments in which the subject matter may be
practiced. The embodiments illustrated are described in suf-
ficient detail to enable those skilled in the art to practice the
teachings disclosed herein. Other embodiments may be uti-
lized and derived therefrom, such that structural and logical
substitutions and changes may be made without departing
from the scope of this disclosure. This Detailed Description,
therefore, is not to be taken in a limiting sense, and the scope
of various embodiments is defined only by the appended
claims, along with the full range of equivalents to which such
claims are entitled.

Such embodiments of the disclosed subject matter may be
referred to herein, individually and/or collectively, by the
term “invention” merely for convenience and without intend-
ing to voluntarily limit the scope of this application to any
single invention or inventive concept if more than one is in
fact disclosed. Thus, although specific embodiments have
been illustrated and described herein, it should be appreciated
that any arrangement calculated to achieve the same purpose
may be substituted for the specific embodiments shown. This
disclosure is intended to cover any and all adaptations or
variations of various embodiments. Combinations of the
above embodiments, and other embodiments not specifically
described herein, will be apparent to those of skill in the art
upon reviewing the above description.

The functions or algorithms described herein are imple-
mented in hardware, software, or a combination of software
and hardware in some embodiments. The software can com-
prise computer executable instructions stored on computer
readable media such as memory or other type of storage
devices. Further, described functions can correspond to mod-
ules, which can be software, hardware, firmware, or any com-
bination thereof. Multiple functions are performed in one or
more modules as desired, and the embodiments described are
merely embodiments. The software is executed on a digital
signal processor, ASIC, microprocessor, or other type of pro-
cessor operating on a system, such as a personal computer,
server, a router, or other device capable of processing data
including network interconnection devices.

Some embodiments implement the functions in two or
more specific interconnected hardware modules or devices
with related control and data signals communicated between
and through the modules, or as portions of an application-
specific integrated circuit. Thus, process flows can be appli-
cable to software, firmware, and hardware implementations.

Systems and methods of the present disclosure can be
implemented on a mobile device as a mobile application,
web-based application, on a desktop computer as a computer
application, or a combination thereof. A mobile application
can operate on a Smartphone, tablet computer, portable digi-
tal assistant (PDA), ruggedized mobile computer, or other
mobile device. The mobile device can be connected to the
Internet or network via Wi-Fi, Wide Area Network (WAN),
cellular connection, WiMax, Serial Front Panel Data Port
(Serial FPDP), Rapid /O (Input/Output) Transport, or any
other type of wired or wireless method of networking con-

29 <

10

15

20

25

30

35

40

45

50

55

60

12

nection. In some embodiments, a web-based application can
be delivered as a software-as-a-service (SaaS) package (e.g.
cloud-based embodiments) accessible via a device app, a web
browser application, or other suitable application, depending
on the particular embodiment.

It will be readily understood to those skilled in the art that
various other changes in the details, material, and arrange-
ments of the parts and method stages which have been
described and illustrated in order to explain the nature of the
inventive subject matter may be made without departing from
the principles and scope of the inventive subject matter as
expressed in the subjoined claims.

What is claimed is:

1. A computer-implemented system for classifying data
dump data comprising:

one or more processors configured to implement a finger-
print calculator, the fingerprint calculator configured to
receive data structure information that details a pro-
gramming language data structure of a primitive vari-
able of a program to be debugged, and the fingerprint
calculator configured to create, a fingerprint as a func-
tion of the data structure information;

a code generator, the code generator configured to gener-
ate, modified machine code, the modified machine code
including machine code corresponding to the data dump
data with the fingerprint embedded therein;

an embedded instrument to execute the modified machine
code, wherein the modified machine code includes
binary data that, when executed by the embedded instru-
ment, makes the embedded instrument perform an
operation of the program, the embedded instrument to
provide the data dump data, the data dump data includ-
ing machine code from the embedded instrument after
running the program and including the fingerprint
embedded therein;

a fingerprint identifier, the fingerprint identifier configured
to identify the fingerprint in the data dump data from the
embedded instrument;

a data structure lookup table, the data structure lookup
table including (1) the fingerprint and (2) the data struc-
ture information associated with the fingerprint stored
therein; and

a data interpreter, the data interpreter configured to inter-
pret, using at least some of the data from the modified
machine code and the data structure information, a value
ofthe variable at a point in time corresponding a time the
at least some of the data dump data was created.

2. The system of claim 1, wherein the fingerprint calculator
is configured to use a cryptographic hash algorithm to create
the fingerprint.

3. The system of claim 2, wherein the fingerprint is an
MD4, MD5, SHA-1, or SHA-2hash.

4. The system of claim 1, wherein the data structure infor-
mation comprises a type and size of a variable.

5. The system of claim 1, wherein the data structure infor-
mation comprises a name of a variable, type of the variable, a
location of the variable, or a size of the variable.

6. The system of claim 1, wherein the data structure lookup
table is a database, the database including the data structure
lookup table.

7. The system of claim 1, wherein the data dump is received
from an embedded instrument.

8. A method of classifying data dump data, comprising:

receiving data structure information that details a program-
ming language data structure of a primitive variable of a
program to be debugged;

US 9,135,323 B2

13

creating, using a fingerprint calculator, a fingerprint as a

function of the data structure information;

recording the data structure information and the fingerprint

in a data structure lookup table;

embedding, using a code generator, the fingerprint in

machine code of the program to create modified
machine code;

executing, at an embedded instrument, the modified

machine code, wherein the modified machine code
includes binary data that, when executed by the embed-
ded instrument, makes the embedded instrument per-
form an operation of the program;

providing, by the embedded instrument, the data dump

data, the data dump data including machine code from
the embedded instrument after running the program, the
data dump data including the fingerprint embedded
therein;

identifying the fingerprint in the data dump data; and

reconstructing the data structure using at least some of the

data structure information and at least some of the data
dump data to determine a value of the primitive variable
at a point in time corresponding a time the at least some
of the data dump data was created.

9. The method of claim 8, comprising:

looking up the data structure information corresponding to

the fingerprint in the data structure lookup table.

10. The method of claim 8, wherein creating the fingerprint
includes creating a cryptographic hash.

11. The method of claim 9, wherein reconstructing the data
structure includes looking up the data structure in a database
including the data structure lookup table.

12. The method of claim 8, wherein receiving data struc-
ture information includes receiving a variable name, variable
type, location of the variable, and the size of the variable.

13. The method of claim 9, wherein receiving data in the
data dump includes streaming data dump data from an
embedded instrument.

14. The method of claim 8, comprising:

updating the fingerprint corresponding to the data structure

information after the corresponding data structure is
modified.

15. A non-transitory machine readable storage device that
stores instructions, the instructions which, when performed
by a machine, cause the machine to perform operations for
classifying data dump data, the operations comprising:

receiving data structure information that details a program-

ming language data structure of a primitive variable of a
program to be debugged;

creating a fingerprint as a function of the data structure

information;

10

15

20

25

30

35

40

45

14

recording the data structure information and the fingerprint

in a data structure lookup table;

embedding the fingerprint in machine code of the program

to create modified machine code;
executing the modified machine code, wherein the modi-
fied machine code includes binary data that, when
executed by the embedded instrument, makes the
machine perform an operation of the program;

providing the data dump data, the data dump data including
machine code from the embedded instrument after run-
ning the program, the data dump data including the
fingerprint embedded therein;

identifying the fingerprint in the data dump data; and

reconstructing the data structure using at least some of the

data structure information and at least some of the data
dump data to determine a value of the primitive variable
at a point in time corresponding a time the at least some
of the data dump data was created.

16. The machine readable storage device of claim 15,
wherein the instructions include instructions which, when
performed by the machine, cause the machine to perform
operations comprising:

determining the data structure by looking up the data struc-

ture information corresponding to the fingerprint in the
data structure lookup table.

17. The machine readable storage device of claim 15,
wherein the instructions for creating the fingerprint include
instructions which, when performed by the machine, cause
the machine to perform operations comprising creating a
cryptographic hash.

18. The machine readable storage device of claim 16,
wherein the instructions for reconstructing the data structure
include instructions which, when performed by the machine,
cause the machine to perform operations comprising looking
up the data structure in a database including the data structure
lookup table.

19. The machine readable storage device of claim 15,
wherein the instructions for receiving data structure informa-
tion include instructions which, when performed by the
machine, cause the machine to perform operations compris-
ing receiving a variable name, variable type, location of the
variable, and the size of the variable.

20. The machine readable storage device of claim 16,
wherein the instructions for receiving the data dump include
instructions which, when performed by the machine, cause
the machine to perform operations comprising streaming the
data dump data from an embedded instrument.

#* #* #* #* #*

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 19,135,323 B2 Page 1of1
APPLICATION NO. :13/613121

DATED : September 15, 2015

INVENTORC(S) : Wada et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Specification
In column 2, line 53, delete “c102 an™ and insert --102 can--, therefor

In column 7, line 19, delete “I/0” and insert --1/0--, therefor

Signed and Sealed this
Fifteenth Day of March, 2016

Decbatle X Loa

Michelle K. Lee
Director of the United States Patent and Trademark Office

